"Solve linear and quadratic inequalities, including inequalities with fractions, and represent solut

Question 1

Find the set of values of *x* for which

4x - 5 > 15 - x

Question 2

Solve

 $-3 \le \frac{x}{5} + 2 < 10$

Question 3

Solve

 $x^2 + 11x + 18 > 0$

Question 4

Solve the inequality $2x^2 - x - 3 > 0$.

Question 5

 $4p^2 - 20p + 9 < 0$

Find the set of possible values of p.

(4 marks)

(2 marks)

Question 6

Find the set of values of x for which $2x^2 - 5x - 12 < 0$

(4 marks)

(2 marks)

Question 7

Solve the inequality

 $12 - x - x^2 > 0$

(2 marks)

Question 8

Solve the inequality

 $6x + 5 < x^2 + 2x - 7$

(5 marks)

Mark scheme

Question 1

x > 4

(a) 5x > 20 $\underline{x > 4}$ M1 A1 (2)

Question 2

 $x \ge -25$ and x < 40

Question 3

x < -9 or x > -2

Question 4

,

$x < -1, x > \frac{3}{2}$	M1
2	Alft

Question 5

$(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for <i>p</i> . See general guidance.	M1
$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. 4.5, $\frac{36}{8}$, 0.5 etc. If they use the quadratic formula allow $\frac{20\pm16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2}\pm2$ if they complete the square.	A1
$\frac{1}{2} Allow equivalent values e.g. \frac{36}{8} for 4\frac{1}{2}$	M1: Chooses 'inside' region i.e. Lower Limit $Upper Limit or e.g. Lower Limit \leq p \leq Upper LimitA1: Allow p \in (\frac{1}{2}, 4\frac{1}{2}) or just (\frac{1}{2}, 4\frac{1}{2}) andallow p > \frac{1}{2} and p < 4\frac{1}{2} and 4\frac{1}{2} > p > \frac{1}{2} butp > \frac{1}{2}, p < 4\frac{1}{2} scores M1A0\frac{1}{2} > p > 4\frac{1}{2} scores M0A0$	M1A1

Question 6

$(2x+3)(x-4) = 0$, 'Critical values' are $-\frac{3}{2}$ and 4	M1, A1	
$-\frac{3}{2} < x < 4$	M1 A1ft	
		(4)

Question 7

-4 < x < 3	M1 A1
Question 8	
,	
$0 < x^2 - 4x - 12$ (x-6)(x+2)	M1 M1 A1 M1
x > 6, x < -2	A1