"Use and manipulate surds, including rationalising the denominator." (Standard)

Question 1

Write $\sqrt{80}$ in the form $c\sqrt{5}$, where *c* is a positive constant.

Question 2

Simplify $(2\sqrt{5})^2$

Question 3

Express

 $(5-\sqrt{8})(1+\sqrt{2})$

in the form $a + b\sqrt{2}$, where *a* and *b* are integers.

(3 marks)

(1 mark)

(1 mark)

Question 4

Express $(2 - \sqrt{3})^2$ in the form $b + c\sqrt{3}$, where b and c are integers to be found.

Question 5

Simplify $\sqrt{50} - \sqrt{18}$, giving your answer in the form $a\sqrt{2}$, where *a* is an integer.

(2 marks)

Question 6

Find $\frac{15}{\sqrt{3}} - \sqrt{27}$ in the form $k\sqrt{3}$, where k is an integer.

(4 marks)

Question 7

Express $\frac{26}{4+\sqrt{3}}$ in the form $a + b\sqrt{3}$, where a and b are integers.

Question 8

By first simplifying $\sqrt{32} + \sqrt{18}$, simplify

 $\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}}$

giving your answer in the form $b\sqrt{2} + c$, where b and c are integers.

(4 marks)

Mark scheme

Question 1

 $4\sqrt{5}$

(a)
$$\begin{array}{c} 80 = 5 \times 16 \\ \sqrt{80} = 4\sqrt{5} \end{array}$$

Question 2

20

20

I	1	
Sight of 20. (4×5 is not sufficient)		B1

Question 3

 $1 + 3\sqrt{2}$

(i)	$(5-\sqrt{8})(1+\sqrt{2})$		
	$=5+5\sqrt{2}-\sqrt{8}-4$		M1
	$=5+5\sqrt{2}-2\sqrt{2}-4$	$\sqrt{8} = 2\sqrt{2}$, seen or implied at any point.	B1
	$= 1 + 3\sqrt{2}$	$1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	A1
I			1

B1

Question 4

 $7 - 4\sqrt{3}$

Question 5

 $2\sqrt{2}$

$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1
$= 2\sqrt{2}$	Or $a = 2$	A1

Question 6

 $2\sqrt{3}$

$\frac{15}{\sqrt{3}} = \frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 5\sqrt{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{3}$. This may be implied by a correct answer. A1: $5\sqrt{3}$	M1A1
$\sqrt{27} = 3\sqrt{3}$		B1
$\frac{15}{\sqrt{3}} - \sqrt{27} = 2\sqrt{3}$		A1

www.drfrostmaths.com - "Use and manipulate surds, including rationalising the denominator." (Standard)

Question 7

 $8 - 2\sqrt{3}$

Question 8

 $3\sqrt{2} - 2$

(b)
$$\times \frac{3-\sqrt{2}}{3-\sqrt{2}} \xrightarrow{\text{or}} \times \frac{-3+\sqrt{2}}{-3+\sqrt{2}}$$
 seen
 $\left[\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}\right] \xrightarrow{a\sqrt{2}(3-\sqrt{2})}{[9-2]} \rightarrow \frac{3a\sqrt{2}-2a}{[9-2]} \text{ (or better)}$

$$= \underline{3\sqrt{2},-2}$$
A1, A1 (4)