"Use and manipulate surds, including rationalising the denominator." (Standard)

Question 1

Write $\sqrt{80}$ in the form $c \sqrt{5}$, where c is a positive constant.

Question 2

Simplify $(2 \sqrt{5})^{2}$

Question 3

Express
$(5-\sqrt{8})(1+\sqrt{2})$
in the form $a+b \sqrt{2}$, where a and b are integers.
(3 marks)

Question 4

Express $(2-\sqrt{3})^{2}$ in the form $b+c \sqrt{3}$, where b and c are integers to be found.

Question 5

Simplify $\sqrt{50}-\sqrt{18}$, giving your answer in the form $a \sqrt{2}$, where a is an integer.
(2 marks)

Question 6

Find $\frac{15}{\sqrt{3}}-\sqrt{27}$ in the form $k \sqrt{3}$, where k is an integer.

Question 7

Express $\frac{26}{4+\sqrt{3}}$ in the form $a+b \sqrt{3}$, where a and b are integers.

Question 8

By first simplifying $\sqrt{32}+\sqrt{18}$, simplify
$\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}}$
giving your answer in the form $b \sqrt{2}+c$, where b and c are integers.

Mark scheme

Question 1

$4 \sqrt{5}$
(a) $\begin{aligned} 80 & =5 \times 16 \\ \sqrt{80} & =4 \sqrt{5}\end{aligned}$

B1

Question 2

20

20
|Sight of 20. (4×5 is not sufficient)
|B1

Question 3

$$
1+3 \sqrt{2}
$$

(i)

$$
\begin{array}{|lr|}
& (5-\sqrt{8})(1+\sqrt{2}) \\
= & 5+5 \sqrt{2}-\sqrt{8}-4 \\
= & 5+5 \sqrt{2}-2 \sqrt{2}-4 \\
= & 1+3 \sqrt{2}
\end{array} \quad \sqrt{8}=2 \sqrt{2}, \text { seen or implied at any point. } \quad \text { B1 }
$$

Question 4

$$
7-4 \sqrt{3}
$$

Question 5

$2 \sqrt{2}$

$\sqrt{50}-\sqrt{18}=5 \sqrt{2}-3 \sqrt{2}$	$\begin{array}{l}\sqrt{50}=5 \sqrt{2} \text { or } \sqrt{18}=3 \sqrt{2} \text { and the other term } \\ \text { in the form } k \sqrt{2} . \text { This mark may be implied } \\ \text { by the correct answer } 2 \sqrt{2}\end{array}$	M1
$=2 \sqrt{2}$	Or $a=2$	A1

Question 6

$$
2 \sqrt{3}
$$

$\frac{15}{\sqrt{3}}=\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=5 \sqrt{3}$	M1: Attempts to multiply numerator and denominator by $\sqrt{3}$. This may be implied by a correct answer.	M1A1
A1: $5 \sqrt{3}$		
$\sqrt{27}=3 \sqrt{3}$		A1

www.drfrostmaths.com - "Use and manipulate surds, including rationalising the denominator."
(Standard)

Question 7

$8-2 \sqrt{3}$

Question 8

$$
3 \sqrt{2}-2
$$

(b) $\left\lvert\, \times \frac{3-\sqrt{ } 2}{3-\sqrt{2}}\right.$ or $\times \frac{-3+\sqrt{2}}{-3+\sqrt{2}}$ seen

$$
\begin{array}{rl|l}
{\left[\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}\right.} & =] \frac{a \sqrt{2}(3-\sqrt{2})}{[9-2]} \rightarrow \frac{3 a \sqrt{2}-2 a}{[9-2]} \text { (or better) } & \mathrm{dM1} \tag{4}\\
& =\underline{3 \sqrt{2},-2} & \mathrm{Al}, \mathrm{~A} 1
\end{array}
$$

