"Complete the square." (Standard)

Question 1

Show that $x^{2}+6 x+11$ can be written as $(x+p)^{2}+q$, where p and q are integers to be found.

Question 2

$x^{2}+2 x+3 \equiv(x+a)^{2}+b$
Find the values of the constants a and b.

Question 3

$f(x)=x^{2}-8 x+19$
Express $f(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.
(2 marks)

Question 4

$$
x^{2}-8 x-29 \equiv(x+a)^{2}+b
$$

where a and b are constants.
Find the value of a and the value of b.

Question 5

Given that $f(x)=2 x^{2}+8 x+3$, express $f(x)$ in the form $p(x+q)^{2}+r$ where p, q and r are integers to be found.

Question 6

Given that
$5 x^{2}+p x-8=q(x-1)^{2}+r$
for all values of x, find the values of the constants p, q and r.

Question 7

$4 x-5-x^{2}=q-(x+p)^{2}$
Find the value of p and the value of q.

Question 8

Express $4+12 x-2 x^{2}$ in the form $a(x+b)^{2}+c$.

Mark scheme

Question 1

$$
\begin{array}{ll}
(x+3)^{2}+2 & \\
(x+3)^{2}+2 & \text { or } p=3 \text { or } \frac{6}{2} \\
q=2
\end{array} ~
$$

Question 2

$$
a=1, b=2
$$

Question 3

$(x-4)^{2}+3$

$\mathbf{f}(\boldsymbol{x})=(\boldsymbol{x}-4)^{2}+3$	M1: $\mathrm{f}(x)=(x \pm 4)^{2} \pm \alpha, \alpha \neq 0$ (where α is a single number or a numerical expression $\neq 0$	M1A1
	A1: Allow $(x+4)^{2}+3$ and ignore any spurious " $=0$ "	
Allow $\boldsymbol{a}=-\mathbf{4}, \boldsymbol{b}=\mathbf{3}$ to score both marks		

Question 4

Question 5

$2(x+2)^{2}-5$
(b) $2 x^{2}+8 x+3=2\left(x^{2}+\ldots \ldots \ldots \ldots\right)$

$$
\begin{equation*}
=2(x+2)^{2}-5 \tag{A1}
\end{equation*}
$$

$$
\begin{gathered}
\text { or } p=2 \\
\text { or } q=2 \\
\text { or } p=2, q=2 \text { and } r=-5
\end{gathered}
$$

Question 6

$p=-10, q=5, r=-13$
www.drfrostmaths.com - "Complete the square." (Standard)

$5 x^{2}+p x-8=$	$5(x-1)^{2}+r$	
	$=5\left(x^{2}-2 x+1\right)+r$	
	$=5 x^{2}-10 x+5+r$	B1
$p=-10$ $r=-13$		B1
		M1

Question 7

$$
p=-2, q=-1
$$

$$
\begin{aligned}
& 4 x-5-x^{2}=q-(x-p)^{2}, p, q \text { are integers. } \\
& \left\{4 x-5-x^{2}=\right\}-\left[x^{2}-4 x+5\right]=-\left[(x-2)^{2}-4+5\right]=-\left[(x-2)^{2}+1\right] \\
& =-1-(x-2)^{2}
\end{aligned}
$$

A1 A1

Question 8

$$
-2(x-3)^{2}+22
$$

$-2\left(x^{2}-6 x-2\right)$
$\left.=-2\left[(x-3)^{2}-2-9\right)\right]$
$=-2(x-3)^{2}+22$

