"Complete the square." (Standard)

Question 1

Show that $x^2 + 6x + 11$ can be written as $(x + p)^2 + q$, where p and q are integers to be found.

(2 marks)

Question 2

 $x^2 + 2x + 3 \equiv (x + a)^2 + b$

Find the values of the constants *a* and *b*.

Question 3

 $f(x) = x^2 - 8x + 19$

Express f(x) in the form $(x + a)^2 + b$, where *a* and *b* are constants.

(2 marks)

Question 4

 $x^2 - 8x - 29 \equiv (x + a)^2 + b$

where a and b are constants.

Find the value of *a* and the value of *b*.

(3 marks)

Question 5

Given that $f(x) = 2x^2 + 8x + 3$, express f(x) in the form $p(x + q)^2 + r$ where p, q and r are integers to be found.

(3 marks)

Question 6

Given that

 $5x^2 + px - 8 = q(x - 1)^2 + r$

for all values of x, find the values of the constants p, q and r.

(4 marks)

Question 7

 $4x - 5 - x^2 = q - (x + p)^2$

Find the value of p and the value of q.

(3 marks)

Question 8

Express $4 + 12x - 2x^2$ in the form $a(x + b)^2 + c$.

(4 marks)

dfm

Mark scheme

Question 1

 $(x+3)^2 + 2$

$$(x+3)^2+2$$
 or $p=3$ or $\frac{6}{2}$
 $q=2$ B1

Question 2

a = 1, b = 2

Question 3

 $(x-4)^2 + 3$

$f(x) = (x-4)^2 + 3$ Allow $a = -4, b = 3$	(where α is a single number or a numerical expression $\neq 0$) A1: Allow $(x + 4)^2 + 3$ and ignore any spurious "= 0" to score both marks	M1A1
	$M_{1}(c) = (-1)^{2} + c + c^{2}$	I

Question 4

$$a = -4, b = -45$$

Question 5

 $2(x+2)^2 - 5$

(b)
$$2x^2 + 8x + 3 = 2(x^2 + \dots)$$
 or $p=2$ B1
= $2((x+2)^2 \pm \dots)$ or $q=2$ M1
= $2(x+2)^2 - 5$ or $p=2$, $q=2$ and $r=-5$ A1

Question 6

p = -10, q = 5, r = -13

dfm

$$5x^{2} + px - 8 = 5(x - 1)^{2} + r$$

$$= 5(x^{2} - 2x + 1) + r$$

$$= 5x^{2} - 10x + 5 + r$$

$$p = -10$$

$$r = -13$$
M1
A1

Question 7

p = -2, q = -1

4x-5-x = q-(x-p), p, q are integers.	
$\{4x - 5 - x^2 =\} - [x^2 - 4x + 5] = -[(x - 2)^2 - 4 + 5] = -[(x - 2)^2 + 1]$	M1
$= -1 - (x - 2)^2$	A1 A1

Question 8

 $-2(x-3)^2 + 22$

$-2(x^2-6x-2)$	B1
$= -2[(x-3)^2-2-9)]$	B1
	M1
$= -2(x-3)^{2}+22$	A1