"Equation of a straight line." (Standard)

Question 1

The line l_1 has equation 3x + 5y - 2 = 0.

Find the gradient of l_1 .

(2 marks)

Question 2

The line L_2 with equation 2x + 3y - 14 = 0 crosses the x-axis at the point B.

Find the coordinates of B.

(2 marks)

Question 3

The line l_1 passes through the point A(2,5) and has gradient $-\frac{1}{2}$.

Find an equation of l_1 , giving your answer in the form y = mx + c.

Question 4

Find an equation of the line joining A(7,4) and B(2,0), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(3 marks)

Question 5

The points Q(1,3) and R(7,0) lie on the line l_1 , as shown in the figure.

The length of QR is $a\sqrt{5}$. Find the value of a.

Question 6

The line L_1 has equation 4y + 3 = 2x.

The line L_2 passes through the point C(2,4) and is perpendicular to L_1 .

Find an equation for L_2 , giving your answer in the form ax + by + c = 0, where a, b, c are integers.

(5 marks)

Question 7

The straight line l_1 , shown in Figure 1, has equation 5y = 4x + 10

The point P with x-coordinate 5 lies on l_1

The straight line l_2 is perpendicular to l_1 and passes through P.

Find an equation for l_2 , writing your answer in the form ax + by + c = 0 where a, b and c are integers.

(4 marks)

Question 8

The points P and Q have coordinates (-1,6) and (9,0) respectively. The line l is perpendicular to PQ and passes through the mid-point of PQ.

Find the equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5 marks)

Mark scheme

Question 1

$$-\frac{3}{5}$$

(a) Putting the equation in the form y = mx (+c) and attempting to extract the m or mx (not the c), or finding 2 points on the line and using the correct gradient formula.

Gradient = $-\frac{3}{5}$ (or equivalent)

Question 2

(7,0)

(d)
$$y=0, \Rightarrow B(7,0)$$
 or $\underline{x}=7$ $x=7$ or $-\frac{c}{a}$ M1A1ft

Question 3

$$y = -\frac{1}{2}x + 6$$

Question 4

$$4x - 5y - 8 = 0$$
 or $-4x + 5y + 8 = 0$

$$m_{AB} = \frac{4-0}{7-2} \quad \left(= \frac{4}{5} \right)$$
 Equation of AB is: $y - 0 = \frac{4}{5}(x-2)$ or $y - 4 = \frac{4}{5}(x-7)$ (o.e.) A1

Question 5

$$a = 3$$

Question 6

$$2x + y - 8 = 0$$

$$\{4y + 3 = 2x\} \Rightarrow y = \frac{2x - 3}{4} \Rightarrow m(L_1) = \frac{1}{2} \text{ or } \frac{2}{4}$$

So $m(L_2) = -2$
 $L_2: y - 4 = -2(x - 2)$
 $L_2: 2x + y - 8 = 0 \text{ or } L_2: 2x + 1y - 8 = 0$

M1 A1

A1

4

Question 7

$$5x + 4y - 49 = 0$$

Gradient of $I_1 = \frac{4}{5}$ oe	States or implies that the gradient of $l_1 = \frac{4}{5}$. E.g. may be implied by a perpendicular gradient of $-\frac{5}{4}$. Do not award this mark for just rearranging to $y = \frac{4}{5}x +$ unless they then state e.g. $\frac{dy}{dx} = \frac{4}{5}$	B1
Point $P = (5, 6)$	States or implies that P has coordinates $(5, 6)$. $y = 6$ is sufficient. May be seen on the diagram.	В1
$-\frac{5}{4} = \frac{y - 6}{x - 5}$ or $y - 6 = -\frac{5}{4}(x - 5)$ or $6 = -\frac{5}{4}(5) + c \Rightarrow c = \dots$	Correct straight line method using $P(5, "6")$ and gradient of $-\frac{1}{\operatorname{grad} l_1}$. Unless $-\frac{5}{4}$ or $-\frac{1}{4}$ is being used as the gradient here, the gradient of l_1 clearly needs to have been identified and its negative reciprocal attempted to score this mark.	M1
5x+4y-49=0	Accept any integer multiple of this equation including "= 0"	A1

Question 8

$$5x - 3y - 11 = 0$$

Mid-point of
$$PQ$$
 is $(4, 3)$ B1

PQ: $m = \frac{0-6}{9-(-1)}$, $\left(=-\frac{3}{5}\right)$ B1

Gradient perpendicular to $PQ = -\frac{1}{m}$ $\left(=\frac{5}{3}\right)$ M1

 $y-3=\frac{5}{3}(x-4)$ M1

 $5x-3y-11=0$ or $3y-5x+11=0$ or multiples e.g. $10x-6y-22=0$ A1