"Equation of a straight line." (Standard)

Question 1

The line l_{1} has equation $3 x+5 y-2=0$.
Find the gradient of l_{1}.

Question 2

The line L_{2} with equation $2 x+3 y-14=0$ crosses the x-axis at the point B.
Find the coordinates of B.

Question 3

The line l_{1} passes through the point $A(2,5)$ and has gradient $-\frac{1}{2}$.
Find an equation of l_{1}, giving your answer in the form $y=m x+c$.

Question 4

Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 5

The points $Q(1,3)$ and $R(7,0)$ lie on the line l_{1}, as shown in the figure.
The length of $Q R$ is $a \sqrt{5}$. Find the value of a.

Question 6

The line L_{1} has equation $4 y+3=2 x$.
The line L_{2} passes through the point $C(2,4)$ and is perpendicular to L_{1}.
Find an equation for L_{2}, giving your answer in the form $a x+b y+c=0$, where a, b, c are integers.

Question 7

Figure 1
The straight line l_{1}, shown in Figure 1, has equation $5 y=4 x+10$
The point P with x-coordinate 5 lies on l_{1}
The straight line l_{2} is perpendicular to l_{1} and passes through P.
Find an equation for l_{2}, writing your answer in the form $a x+b y+c=0$ where a, b and c are integers.
(4 marks)

Question 8

The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively.
The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$.
Find the equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Mark scheme

Question 1

$-\frac{3}{5}$
(a) Putting the equation in the form $y=m x(+c)$ and attempting to extract the m or $m x$ (not the c),
or finding 2 points on the line and using the correct gradient formula.
Gradient $=-\frac{3}{5} \quad$ (or equivalent)

Question 2

(7,0)
(d) $\mid y=0, \Rightarrow B(7,0) \quad$ or $\quad \underline{x=7} \quad x=7$ or $\left.-\frac{c}{a} \right\rvert\,$ M1A1ft

Question 3

$$
y=-\frac{1}{2} x+6
$$

Question 4

$$
4 x-5 y-8=0 \text { or }-4 x+5 y+8=0
$$

$$
m_{A B}=\frac{4-0}{7-2} \quad\left(=\frac{4}{5}\right)
$$

Equation of $A B$ is: $\quad y-0=\frac{4}{5}(x-2)$ or $y-4=\frac{4}{5}(x-7)$

	M1
(o.e.)	M1
A1	

Question 5

$a=3$

Question 6

$$
\begin{aligned}
& 2 x+y-8=0 \\
& \{4 y+3=2 x\} \Rightarrow y=\frac{2 x-3}{4} \Rightarrow m\left(L_{1}\right)=\frac{1}{2} \text { or } \frac{2}{4} \\
& \text { So } m\left(L_{2}\right)=-2 \\
& L_{2}: y-4=-2(x-2) \\
& L_{2}: 2 x+y-8=0 \quad \text { or } L_{2}: 2 x+1 y-8=0
\end{aligned}
$$

M1 A1
B1ft
M1
A1

Question 7

$5 x+4 y-49=0$

Gradient of $l_{1}=\frac{4}{5}$ oe	States or implies that the gradient of $l_{1}=\frac{4}{5}$. E.g. may be implied by a perpendicular gradient of $-\frac{5}{4}$. Do not award this mark for just rearranging to $y=\frac{4}{5} x+\ldots$ unless they then state e.g. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{5}$	B1
Point $P=(5,6)$	States or implies that P has coordinates $(5,6) . y=6$ is sufficient. May be seen on the diagram.	B1
$-\frac{5}{4}=\frac{y-" 6 "}{x-5}$ or $y-" 6^{\prime \prime}=-\frac{5}{4}(x-5)$ or $" 6 "=-\frac{5}{4}(5)+c \Rightarrow c=\ldots$	Correct straight line method using $\mathrm{P}\left(5\right.$, " 6 ") and gradient of $-\frac{1}{\operatorname{grad} l_{1}}$. Unless $-\frac{5}{4}$ or $-\frac{1}{4}$ is being used as the gradient here, the gradient of l_{1} clearly needs to have been identified and its negative reciprocal attempted to score this mark.	M1
$5 x+4 y-49=0$	Accept any integer multiple of this equation including " $=0$ "	A1

Question 8

$$
5 x-3 y-11=0
$$

Mid-point of $P Q$ is $(4,3)$
$P Q: m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$
Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$
$y-3=\frac{5}{3}(x-4)$
$5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0 \quad$ A1

