

Gordon's School Mathematics Department

Essential Work prior to A Level Further Mathematics

Name:_____

Prior Work prior to A Level Further Mathematics

Workbook

A Level Mathematics and A Level Further Mathematics take as a base your knowledge of topics from GCSE. The following topics will be tested on arrival in September. Very few lessons will be spent going over these basic principles.

Time should be spent over the summer months preparing yourself for the preliminary test on the first week back.

Guidance

- 1. Complete the whole booklet.
- 2. Read each question carefully.
- 3. Attempt every question.
- 4. Check and mark your answers.
- 5. Always show your workings.
- 6. Spend additional time on topics you struggle with.

Algebra

- 1. Expand single, double and triple brackets
- 2. Factorise linear, quadratic and simple cubic expressions
- 3. Evaluate using laws of indices
- 4. Simplify and use the rules of surds
- 5. Rationalise the denominator
- 6. Solve quadratics using factorising, the quadratic formula and completing the square
- 7. Solve linear simultaneous equations
- 8. Solve quadratic simultaneous equations
- 9. Solve linear inequalities
- 10. Solve quadratic inequalities

Coordinate Geometry

- 11. Find the gradient of a line given two points
- 12. Understand the equation of a straight line
- 13. Find the equation of a line
- 14. Know rules for parallel and perpendicular lines

Trigonometry

- 15. The sine rule
- 16. The cosine rule
- 17. Mixed questions
- 18. Area of triangles

Further Algebra

- 19. Inequalities on Graphs
- 20. Transforming Graphs
- 21. Algebraic Fractions

Algebra

- 1. Expand single, double and triple brackets
 - 1. Show that
 - a $(3x+1)(x^2-2x+4) \equiv 3x^3-5x^2+10x+4$
 - **b** $(1+2x-x^2)(1-2x+x^2) \equiv 1-4x^2+4x^3-x^4$
 - c $(3-x)^3 \equiv 27 27x + 9x^2 x^3$

2. Giving your answers in descending powers of x, expand and simplify

- a $(x + 1)(x^2 + 5x 6)$ b $(2x 5)(x^2 3x + 7)$ c $(4 7x)(2 + 5x x^2)$ d $(3x 2)^3$ e $(x^2 + 3)(2x^2 x + 9)$ f $(4x 1)(x^4 3x^2 + 5x + 2)$ g $(x^2 + 2x + 5)(x^2 + 3x + 1)$ h $(x^2 + x 3)(2x^2 x + 4)$ i $(3x^2 5x + 2)(2x^2 4x 8)$ j $(x^2 + 2x 6)^2$ k $(x^3 + 4x^2 + 1)(2x^4 + x^2 + 3)$ l $(6 2x + x^3)(3 + x^2 x^3 + 2x^4)$
- 3. Simplify

a
$$(p^2 - 1)(p + 4)(2p + 3)$$

b $(t+2)(t^2 + 3t + 5) + (t+4)(t^2 + t + 7)$
c $2(x^2 - 3)(x^2 + x - 4) + (3x - 1)(4x^3 + 2x^2 - x + 6)$
d $(u^3 - 4u^2 - 3)(u + 2) - (2u^3 + u - 1)(u^2 + 5u - 3)$

2. Factorise linear, quadratic and simple cubic expressions

1	Factorise
⊥.	racionse

	a . $2x + 6$	b $x^2 + 6x$	c $6y^2 - 9y$	d $24x^2y^3z + 15xy^2z^4$
2.	Factorise			
	a $x^2 + 4x + 3$	b $x^2 + 7x + 10$	c $y^2 - 3y + 2$	d $x^2 - 6x + 9$
	e $y^2 - y - 2$	f $a^2 + 2a - 8$	g $x^2 - 1$	h $p^2 + 9p + 14$
	i $x^2 - 2x - 15$	j $16 - 10m + m^2$	k $t^2 + 3t - 18$	1 $y^2 - 13y + 40$
	m $r^2 - 16$	n $y^2 - 2y - 63$	o $121 + 22a + a^2$	p $x^2 + 6x - 72$
	q $26 - 15x + x^2$	r $s^2 + 23s + 120$	s $p^2 + 14p - 51$	t $m^2 - m - 90$
3.	Factorise			
	a $2x^2 + 3x + 1$	b $2 + 7p + 3p^2$	c $2y^2 - 5y + 3$	d $2 - m - m^2$
	e $3r^2 - 2r - 1$	f $5 - 19y - 4y^2$	g $4-13a+3a^2$	h $5x^2 - 8x - 4$
	i $4x^2 + 8x + 3$	j $9s^2 - 6s + 1$	k $4m^2 - 25$	$1 2 - y - 6y^2$
	m $4u^2 + 17u + 4$	n $6p^2 + 5p - 4$	o $8x^2 + 19x + 6$	p $12r^2 + 8r - 15$

4. Factorise completely

a $x^3 + 7x^2 + 12x$ b $2x^3 - 7x^2 - 4x$ c $12x^3 - 5x^2 - 2x$

3. Using laws of indices

4.

1. Evaluate

		a 3	-2	b	$(\frac{2}{5})^0$	c	(-2)-6	d	$(\frac{1}{6})^{-2}$	e	$(1\frac{1}{2})^{-3}$	f	9 ^½
		g l	64	h	$(-27)^{\frac{1}{3}}$	i	$\left(\frac{1}{49}\right)^{\frac{1}{2}}$	j	$125^{\frac{1}{3}}$	k	$(\frac{4}{9})^{\frac{1}{2}}$	1	$36^{-\frac{1}{2}}$
		m 8	31-4	n	$(-64)^{-\frac{1}{3}}$	0	$\left(\frac{1}{32}\right)^{-\frac{1}{5}}$	р	$(-\frac{8}{125})^{\frac{1}{3}}$	q	$(2\frac{1}{4})^{\frac{1}{2}}$	r	$(3\frac{3}{8})^{-\frac{1}{3}}$
2	2.	Eval	uate										
		a 4	12	b	$27^{\frac{2}{3}}$	c	161	d	(-125)	e	9 ⁵ 2	f	8-23
		g 3	6 ⁻¹	h	$(\frac{1}{8})^{\frac{4}{7}}$	i	$(\frac{4}{9})^{\frac{3}{2}}$	j	$\left(\frac{1}{216}\right)^{-\frac{2}{3}}$	k	$\left(\frac{9}{16}\right)^{-\frac{3}{2}}$	1	$\left(-\frac{27}{44}\right)^{\frac{4}{3}}$
		m ($(0.04)^{\frac{1}{2}}$	n	(2.25) ^{-1/2}	0	(0.064) [†] p	$(1\frac{9}{16})^{-\frac{3}{2}}$	q	$(5\frac{1}{16})^{\frac{1}{4}}$	r	$(2\frac{10}{27})^{-\frac{4}{3}}$
	2	Wor	k out					a	10	л Т	10-		21
0	5.	a 4	$1^{\frac{1}{2}} \times 27^{\frac{1}{2}}$		b	$16^{\frac{1}{4}} +$	25 ^½	c	8 ⁻⁺ ÷ 3	$6^{\frac{1}{2}}$	d	$(-64)^{\frac{1}{3}}$	$\times 9^{\frac{3}{2}}$
			$(1)^{-2} = (-5)^{-2}$	en‡	ſ	(山 ^主)	$(1)^{-2}$		81 ¹ - (بر ب	h	(±) ⁻¹	$\times (4)^{-\frac{1}{2}}$
		• (3) - (-(9) 201 ²		(121)0	5 (22)	в 2 ь	(100)0.5	49)	1.5	(16)-0.2	5
4	L.	i ($\frac{1}{9}$ $^{\circ} \times ($	52) ²	1 ((121)	+(32)	к	(100)	÷ (0.25)- I	(16)	× (243)
		a	$x^8 \times x^{-6}$		b	$y^{-2} \times y$	-4	c	$6p^3 \div 2p$	p ⁷	d	$(2x^{-4})^3$	
		e j	$y^3 \times y^{-\frac{1}{2}}$		f	$2b^{\frac{2}{3}}$ ×	$4b^{\frac{1}{4}}$	g	$x^{\frac{3}{5}} \div x^{\frac{1}{5}}$	ł	h	$a^{\frac{1}{2}} \div a$	1 ⁴ 3
		i	$p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$		i	$(3x^{\frac{2}{5}})^2$		k	$v \times v^{\frac{1}{6}}$	$\times v^{-\frac{1}{2}}$	1	$4t^{\frac{3}{2}} \div 1$	$12t^{\frac{1}{2}}$
		-	$P \sim P$ $h^2 \sim h^{\frac{1}{4}}$,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			4-3-2-2-	-	-	2020	
		m	$\frac{b}{b^{\frac{1}{2}}}$		n	$\frac{y^2 \times y^2}{y}$		0	$\frac{4x^{4} \times 5x}{6x^{\frac{1}{4}}}$	_	р	$\frac{2a \times a}{8a^{-\frac{1}{2}}}$	
Sim	pli	fy and	d use the	rul	es of sur	<u>ds</u>							
1.	S	implif	ŷ.	_	_	_	_	_		_		_	
	a	√12	- b	√2	8	c √80)	d √27	е -	√24	f	√128	
	g	√45	5 h 	√4	0	i √75	5	j √112	2 k	√99	I	√147	
	n	√21	16 n	√8	00	o √18	0	p √60	q	√363	r	√208	
2.	S	implif	îy				-						
	a	√18 √18	5 + √50			b √48	s – √27 =	1 2 20	e t	2 18 -	+ √72	2 65	
	đ	V 30	50 - 2√40		_	e 2√:	o – √45	+3√20) 1	√24 ·	+ √150 -	- 2 √96	
3.	E	xpress	s in the for	m <i>a</i>	$+b\sqrt{3}$		_	_			_	_	
	a	√3 ((2 + √3)	_		b 4 –	√3 - 2(1 - √3)	c	(1 + 1	(3)(2+-	√3)	
	d	(4 +	√3)(1+2	2√3)	e (3√	$(3 - 4)^2$		f	(3√3	+ 1)(2 -	5√3)	
4.	S	implif	ŷ				_	_		-			
	a	(√5	+1)(2√5	+3)	b (1 -	√2)(4	√2 – 3)	e c	(2√7	+ 3)2	_	
	d	(3√	2 − 1)(2√	2 +	5)	e (√5	- √2)	(√5 +2	√2) f	(3 – v	8)(4 + -	√2)	

5. <u>Rationalise the denominator</u>

1. Express each of the following as simply as possible with a rational denominator.

a
$$\frac{1}{\sqrt{5}}$$
 b $\frac{2}{\sqrt{3}}$ **c** $\frac{1}{\sqrt{8}}$ **d** $\frac{14}{\sqrt{7}}$ **e** $\frac{3\sqrt{2}}{\sqrt{3}}$ **f** $\frac{\sqrt{5}}{\sqrt{15}}$
g $\frac{1}{3\sqrt{7}}$ **h** $\frac{12}{\sqrt{72}}$ **i** $\frac{1}{\sqrt{80}}$ **j** $\frac{3}{2\sqrt{54}}$ **k** $\frac{4\sqrt{20}}{3\sqrt{18}}$ **l** $\frac{3\sqrt{175}}{2\sqrt{27}}$

2. Express each of the following as simply as possible with a rational denominator.

a

$$\frac{1}{\sqrt{2}+1}$$
 b
 $\frac{4}{\sqrt{3}-1}$
 c
 $\frac{1}{\sqrt{6}-2}$
 d
 $\frac{3}{2+\sqrt{3}}$

 e
 $\frac{1}{2+\sqrt{5}}$
 f
 $\frac{\sqrt{2}}{\sqrt{2}-1}$
 g
 $\frac{6}{\sqrt{7}+3}$
 h
 $\frac{1}{3+2\sqrt{2}}$

 i
 $\frac{1}{4-2\sqrt{3}}$
 j
 $\frac{3}{3\sqrt{2}+4}$
 k
 $\frac{2\sqrt{3}}{7-4\sqrt{3}}$
 l
 $\frac{6}{\sqrt{5}-\sqrt{3}}$

6. Solve quadratics using factorising, the quadratic formula and completing the square

Factorising

1. Using factorisation, solve each equation.

a	$x^2 - 4x + 3 = 0$	b	$x^2 + 6x + 8 = 0$	с	$x^2 + 4x - 5 = 0$	d	$x^2 - 7x = 8$
e	$x^2 - 25 = 0$	f	x(x-1) = 42	g	$x^2 = 3x$	h	$27 + 12x + x^2 = 0$
i	$60 - 4x - x^2 = 0$	j	$5x + 14 = x^2$	k	$2x^2 - 3x + 1 = 0$	I	x(x-1) = 6(x-2)
m	$3x^2 + 11x = 4$	n	x(2x-3)=5	0	$6 + 23x - 4x^2 = 0$	р	$6x^2 + 10 = 19x$
q	$4x^2 + 4x + 1 = 0$	r	$3(x^2+4) = 13x$	s	$(2x+5)^2 = 5-x$	t	3x(2x-7) = 2(7x+3)

Quadratic Formula

2 Use the quadratic formula to solve each equation, giving your answers as simply as possible in terms of surds where appropriate.

a	$x^2 + 4x + 1 = 0$	b	$4 + 8t - t^2 = 0$	c	$y^2 - 20y + 91 = 0$	d	$r^2+2r-7=0$
e	$6 + 18a + a^2 = 0$	f	m(m-5)=5	g	$x^2 + 11x + 27 = 0$	h	$2u^2 + 6u + 3 = 0$
i	$5 - y - y^2 = 0$	j	$2x^2 - 3x = 2$	k	$3p^2 + 7p + 1 = 0$	l	$t^2 - 14t = 14$
m	$0.1r^2 + 1.4r = 0.9$	n	$6u^2 + 4u = 1$	0	$\frac{1}{2}y^2 - 3y = \frac{2}{3}$	р	4x(x-3) = 11 - 4x

Completing the square

3 Solve each equation by completing the square, giving your answers as simply as possible in terms of surds where appropriate.

a	$y^2 - 4y + 2 = 0$	b	$p^2 + 2p - 2 = 0$	c	$x^2 - 6x + 4 = 0$	d	$7 + 10r + r^2 = 0$
e	$x^2 - 2x = 11$	f	$a^2 - 12a - 18 = 0$	g	$m^2 - 3m + 1 = 0$	h	$9 - 7t + t^2 = 0$
i	$u^2 + 7u = 44$	j	$2y^2 - 4y + 1 = 0$	k	$3p^2 + 18p = -23$	l	$2x^2 + 12x = 9$
m	$-m^2 + m + 1 = 0$	n	$4x^2 + 49 = 28x$	0	$1 - t - 3t^2 = 0$	р	$2a^2 - 7a + 4 = 0$

7. Solve linear simultaneous equations

1 Solve each pair of simultaneous equations.

a	y = 3x	b $y = x - 6$	c	y = 2x + 6
	y = 2x + 1	$y = \frac{1}{2}x - 4$		y = 3 - 4x
d	x + y - 3 = 0	e $x + 2y + 11 = 0$	f	3x + 3y + 4 = 0
	x + 2y + 1 = 0	2x - 3y + 1 = 0		5x - 2y - 5 = 0

8. Solve quadratic simultaneous equations

1. Solve each pair of simultaneous equations.

a	$x^2 - y + 3 = 0$	b	$2x^2 - y - 8x = 0$	с	$x^2 + y^2 = 25$
	x - y + 5 = 0		x + y + 3 = 0		2x - y = 5
d	$x^2 + 2xy + 15 = 0$	e	$x^2 - 2xy - y^2 = 7$	f	$3x^2 - x - y^2 = 0$
	2x - y + 10 = 0		x + y = 1		x+y-1=0
g	$2x^2 + xy + y^2 = 22$	h	$x^2 - 4y - y^2 = 0$	i	$x^2 + xy = 4$
	x + y = 4		x - 2y = 0		3x + 2y = 6
j	$2x^2 + y - y^2 = 8$	k	$x^2 - xy + y^2 = 13$	ı	$x^2 - 5x + y^2 = 0$
	2x - y = 3		2x - y = 7		3x + y = 5

9. Solve linear inequalities

1 Find the set of values of *x* for which

a	2x + 1 < 7	b	$3x - 1 \ge 20$	c	2x - 5 > 3	d	$6 + 3x \le 42$
e	$5x + 17 \ge 2$	f	$\frac{1}{3}x + 7 < 8$	g	$9x - 4 \ge 50$	h	3x + 11 < 7
i	18 - x > 4	j	$10 + 4x \le 0$	k	12 - 3x < 10	l	$9 - \frac{1}{2}x \ge 4$

2 Solve each inequality.

a 2y-3 > y+4	b $5p + 1 \le p + 3$	c $x-2 < 3x-8$
d $a+11 \ge 15-a$	e $17 - 2u < 2 + u$	$\mathbf{f} 5-b \ge 14-3b$
$\mathbf{g} 4x + 23 < x + 5$	$h 12 + 3y \ge 2y - 1$	i $16 - 3p \le 36 + p$
j $5(r-2) > 30$	$\mathbf{k} 3(1-2t) \le t-4$	l $2(3+x) \ge 4(6-x)$
m $7(y+3) - 2(3y-1) < 0$	n $4(5-2x) > 3(7-2x)$	o $3(4u-1) - 5(u-3) < 9$

10. Solve quadratic inequalities

1. Find the set of values of x for which

a	$x^2 - 4x + 3 < 0$	b $x^2 - 4 \le 0$	с	$15 + 8x + x^2 < 0$	d	$x^2 + 2x \le 8$
e	$x^2 - 6x + 5 > 0$	f $x^2 + 4x > 12$	g	$x^2 + 10x + 21 \ge 0$	h	$22 + 9x - x^2 > 0$
i	$63 - 2x - x^2 \le 0$	j $x^2 + 11x + 30 > 0$	k	$30 + 7x - x^2 > 0$	I	$x^2 + 91 \ge 20x$

2. Solve each inequality.

a	$2x^2 - 9x + 4 \le 0$	b	$2r^2 - 5r - 3 < 0$	с	$2-p-3p^2 \ge 0$
d	$2y^2 + 9y - 5 > 0$	e	$4m^2 + 13m + 3 < 0$	f	$9x - 2x^2 \le 10$

Coordinate Geometry

11. Find the gradient of a line given two points

1 Find the gradient of the line segment joining each pair of points.

a (3, 1) and (5, 5)	b (4, 7) and (10, 9)	c (6, 1) and (2, 5)	d (-2, 2) and (2, 8)
e (1, 3) and (7, −1)	f (4, 5) and (-5, -7)	g (-2, 0) and (0, -8)	h (8, 6) and (-7, -2)

12. Understand the equation of a straight line

1. Write down the gradient and y-intercept of each line.

a y = 4x - 1 **b** $y = \frac{1}{3}x + 3$ **c** y = 6 - x **d** $y = -2x - \frac{3}{5}$

2. Find the gradient and y-intercept of each line.

a x + y + 3 = 0 **b** x - 2y - 6 = 0 **c** 3x + 3y - 2 = 0 **d** 4x - 5y + 1 = 0

13. Find the equation of a line

Find, in the form y = mx + c, the equation of the straight line with the given gradient which
passes through the given point.

a	gradient 3,	point (1, 2)	b	gradient -1,	point (5, 3)
c	gradient 4,	point (-2, -3)	d	gradient -2,	point (-4, 1)
e	gradient $\frac{1}{1}$,	point (-3, 1)	f	gradient $-\frac{5}{6}$,	point (9, -2)

2. Find, in the form y = mx + c, the equation of the straight line passing through each pair of points.

a	(0, 1) and (4, 13)	b	(2, 9) and (7, −1)	с	(-4, 3) and (2, 7)
d	$(-\frac{1}{2}, -2)$ and $(2, 8)$	e	(3, -2) and (18, -5)	f	(-3.2, 4) and (-2, 0.4)

14. Know rules for parallel and perpendicular lines

1 Find the gradient of a straight line that is

a	parallel to the line $y = 3 - 2x$,	b	parallel to the line $2x - 5y + 1 = 0$,
c	perpendicular to the line $y = 3x + 4$,	d	perpendicular to the line $x + 2y - 3 = 0$.

- 2 Find, in the form y = mx + c, the equation of the straight line
 - a parallel to the line y = 4x 1 which passes through the point with coordinates (1, 7),
 - **b** perpendicular to the line y = 6 x which passes through the point with coordinates (-4, 3),
 - c perpendicular to the line x 3y = 0 which passes through the point with coordinates (-2, -2).
- 3 Find, in the form ax + by + c = 0, where a, b and c are integers, the equation of the straight line
 - a parallel to the line 2x 3y + 5 = 0 which passes through the point with coordinates (3, -1),
 - **b** perpendicular to the line 3x + 4y = 1 which passes through the point with coordinates (2, 5),
 - c parallel to the line 3x + 5y = 6 which passes through the point with coordinates (-4, -7).

Trigonometry 15. <u>The sine rule</u>

1

The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Use the sine rule to find the length *AC* to 3 significant figures.

2

The diagram shows triangle *PQR* in which *PQ* = 8.2 cm, *PR* = 11.4 cm and $\angle PQR = 57^{\circ}$. Use the sine rule to find the size of $\angle PRQ$ in degrees to 1 decimal place.

16. The cosine rule

The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Use the cosine rule to find the length XZ.

The diagram shows triangle ABC in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Use the cosine rule to find the size of $\angle ACB$.

17. Mixed questions

Find the length x in each triangle.

18. Area of triangles

1. Find the area of each of the following triangles.

Further Algebra

- 19. Inequalities on Graphs
- 1. On the grid, shade the region that satisfies all three of these inequalities

(Total for Question 19 = 4 marks)

2. $-2 < x \le 1$ y > -2 y < x + 1

x and y are integers.

On the grid, mark with a cross (\mathbf{x}), each of the six points which satisfies **all** these 3 inequalities.

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which satisfy all these four inequalities.

20. Transforming Graphs

Describe how the graph of y = f(x) is transformed to give the graph of 1

a
$$y = f(x - 1)$$
 b $y = f(x) - 3$
 c $y = 2f(x)$
 d $y = f(4x)$

 e $y = -f(x)$
 f $y = \frac{1}{5}f(x)$
 g $y = f(-x)$
 h $y = f(\frac{2}{3}x)$

e
$$y = -f(x)$$
 f $y = \frac{1}{5}f(x)$ **g** $y = f(-x)$ **h** $y = f(-x)$

2

The diagram shows the curve with equation y = f(x) which crosses the coordinate axes at the points (0, 3) and (4, 0).

Showing the coordinates of any points of intersection with the axes, sketch on separate diagrams the graphs of

a y = 3f(x)**b** y = f(x + 4)**d** $y = f(\frac{1}{2}x)$ c y = -f(x)

- Find and simplify an equation of the graph obtained when 3
 - **a** the graph of y = 2x + 5 is translated by 1 unit in the positive y-direction,
 - **b** the graph of y = 1 4x is stretched by a factor of 3 in the y-direction, about the x-axis,
 - **c** the graph of y = 3x + 1 is translated by 4 units in the negative x-direction,
 - **d** the graph of y = 4x 7 is reflected in the x-axis.

4

The diagram shows the curve with equation y = f(x) which has a turning point at (2, 4) and crosses the y-axis at the point (0, 6).

Showing the coordinates of the turning point and of any points of intersection with the axes, sketch on separate diagrams the graphs of

a
$$y = f(x) - 3$$
 b $y = f(x + 2)$ **c** $y = f(2x)$ **d** $y = \frac{1}{2}f(x)$

Describe a single transformation that would map the graph of $y = x^3$ onto the graph of 5

a
$$y = 4x^3$$
 b $y = (x-2)^3$ **c** $y = -x^3$ **d** $y = x^3 + 5$

21. Algebraic Fractions

1 Simplify

a
$$\frac{3x-1}{18x-6}$$
 b $\frac{6x+15}{8x+20}$ **c** $\frac{3y+3}{y^2+7y+6}$ **d** $\frac{x^2-25}{x^2-7x+10}$
 a^2-a-6 **e** x^2+3x $3t^2-11t-4$ **e** $6x^2-13x+6$

e
$$\frac{a^2 - a - 6}{a^2 + 3a - 18}$$
 f $\frac{x^2 + 5x}{2x^2 + 5x - 3}$ g $\frac{5t^2 - 1tt - 4}{t^2 - 16}$ h $\frac{6x^2 - 15x + 6}{12x^2 + x - 6}$

2 Express as simply as possible

$$a \quad \frac{3x^2}{9x-9} \times \frac{4x-4}{2x} \qquad b \quad \frac{x^2-36}{x^2+7x+10} \div \frac{x-6}{x+2} \\ c \quad \frac{n^2+2n}{n^2+6n+8} \times \frac{n+4}{n^2} \qquad d \quad \frac{4x-12}{x^2-4} \times \frac{x^2+2x}{x^2-2x-3} \\ e \quad \frac{4y^2}{2y^2+y} \div \frac{y^2+2y-15}{2y^2+11y+5} \qquad f \quad \frac{x^2-1}{2x^2+7x-4} \times \frac{6x^2-5x+1}{3x^2-4x+1} \\ g \quad \frac{10x-10}{5x+15} \div \frac{4-3x-x^2}{x^2+7x+12} \qquad h \quad \frac{a^3-3a^2}{8a^2-4a} \div \frac{a^2-9}{2a^2+5a-3} \\ \end{cases}$$

3 Express as a single fraction in its simplest form

$$\mathbf{a} \quad \frac{2}{y} + \frac{7}{y+4} \qquad \mathbf{b} \quad \frac{2x}{x-5} - \frac{1}{x+3} \qquad \mathbf{c} \quad \frac{7}{x(x+2)} - \frac{3x}{x+2} \\ \mathbf{d} \quad \frac{x}{(x-3)(x-1)} + \frac{5}{2(x-1)} \qquad \mathbf{e} \quad \frac{2}{q^2+3q} + \frac{5q}{4q+12} \qquad \mathbf{f} \quad \frac{4}{3x-3} + \frac{x+2}{x^2-x} \\ \mathbf{g} \quad \frac{4}{x+5} + \frac{x}{x^2+8x+15} \qquad \mathbf{h} \quad \frac{6x}{x^2-4} - \frac{3}{x+2} \qquad \mathbf{i} \quad \frac{5t+12}{2t^2+7t+3} - \frac{4}{2t+1} \end{aligned}$$

4 Simplify

a
$$\frac{x^2 - 5x}{6x - 30}$$

b $\frac{16 - x^2}{x^2 + 2x - 8}$
c $\frac{2x^2 - 4x - 6}{3x^2 - 12x + 9}$
d $\frac{x^3 - x}{2x^2 - x - 1}$
e $\frac{3x - x^2}{2x^2 - 18}$
f $\frac{x^3 + x^2 - 2x}{3x^2 + 4x - 4}$
g $\frac{2 + 5x - 3x^2}{2x^2 + x - 10}$
h $\frac{x^4 - 5x^2 + 4}{x^2 - x - 2}$

5 Express as simply as possible

$$a \quad \frac{10x^2 - 10}{5x + 10} \times \frac{x^2 + 6x + 8}{x^2 + 5x + 4} \qquad b \quad \frac{t^2 - 2t}{2t^2 - t - 6} \div \frac{9t^2 - 4}{6t^2 + 13t + 6}$$

$$c \quad \frac{2x^2 + 12x + 10}{4x^2 - 7x + 3} \div \frac{4x^2 + 20x}{4x^2 - 3x} \qquad d \quad \frac{8x^2 + 6x - 9}{4x^2 + 12x + 9} \times \frac{2x^2 + 3x}{6 - 8x}$$

$$e \quad \frac{x^4 + 6x^2 + 5}{x^2 - 9} \times \frac{2x^2 - 6x}{4x^2 + 4} \qquad f \quad \frac{y^4 - 16}{5y^2 + 9y - 2} \div \frac{y^2 + 4}{25y^2 - 10y + 1}$$

Answers: Algebra

1.	<u>Expa</u>	nd s	ingle, double and triple bracke	ets	
	1.	a	$LHS = (3x+1)(x^2 - 2x + 4)$	= = =	$3x(x^2 - 2x + 4) + (x^2 - 2x + 4)$ $3x^3 - 6x^2 + 12x + x^2 - 2x + 4$ $3x^3 - 5x^2 + 10x + 4 = RHS$
		b	LHS = $(1 + 2x - x^2)(1 - 2x + x^2)$	= (= 1 = 1	$1 - 2x + x^{2} + 2x(1 - 2x + x^{2}) - x^{2}(1 - 2x + x^{2})$ $1 - 2x + x^{2} + 2x - 4x^{2} + 2x^{3} - x^{2} + 2x^{3} - x^{4}$ $1 - 4x^{2} + 4x^{3} - x^{4} = \text{RHS}$
		c	$LHS = (3 - x)^3$	= (= 3 = 2	$3 - x)(9 - 6x + x^{2})$ $3(9 - 6x + x^{2}) - x(9 - 6x + x^{2})$ $27 - 18x + 3x^{2} - 9x + 6x^{2} - x^{3}$ $27 - 27x + 9x^{2} - x^{3} = \text{RHS}$
	2.	a -	$= x(x^{2} + 5x - 6) + (x^{2} + 5x - 6)$ = $x^{3} + 5x^{2} - 6x + x^{2} + 5x - 6$ = $x^{3} + 6x^{2} - x - 6$	ł	$b = 2x(x^2 - 3x + 7) - 5(x^2 - 3x + 7) = 2x^3 - 6x^2 + 14x - 5x^2 + 15x - 35 = 2x^3 - 11x^2 + 29x - 35$
		c	$= 4(2 + 5x - x^{2}) - 7x(2 + 5x - x^{2})$ = 8 + 20x - 4x^{2} - 14x - 35x^{2} + 7x^{3} = 7x ³ - 39x ² + 6x + 8		$d = (3x-2)(3x-2)^2 = (3x-2)(9x^2-12x+4) = 3x(9x^2-12x+4) - 2(9x^2-12x+4) = 27x^3 - 36x^2 + 12x - 18x^2 + 24x - 8 = 27x^3 - 54x^2 + 36x - 8$
		e	$= x^{2}(2x^{2} - x + 9) + 3(2x^{2} - x + 9)$ = $2x^{4} - x^{3} + 9x^{2} + 6x^{2} - 3x + 27$ = $2x^{4} - x^{3} + 15x^{2} - 3x + 27$	1	$f = 4x(x^4 - 3x^2 + 5x + 2) - (x^4 - 3x^2 + 5x + 2)$ = 4x ⁵ - 12x ³ + 20x ² + 8x - x ⁴ + 3x ² - 5x - 2 = 4x ⁵ - x ⁴ - 12x ³ + 23x ² + 3x - 2
		g	$= x^{2}(x^{2} + 3x + 1) + 2x(x^{2} + 3x + 1) + 5$ = $x^{4} + 3x^{3} + x^{2} + 2x^{3} + 6x^{2} + 2x + 5x^{2} + 5x^{2} + 5x^{2} + 5x^{3} + 12x^{2} + 17x + 5$	$x^2 + 3 + 15x + $	3x + 1) + 5
		h :	$= x^{2}(2x^{2} - x + 4) + x(2x^{2} - x + 4) - 3(x^{2})$ $= 2x^{4} - x^{3} + 4x^{2} + 2x^{3} - x^{2} + 4x - 6x^{2} + 3x^{2} + 4x^{2} - 3x^{2} + 7x - 12$	$2x^2 - x$ + $3x -$	r + 4) 12
		1	$= 3x^{2}(2x^{2} - 4x - 8) - 5x(2x^{2} - 4x - 8)$ = $6x^{4} - 12x^{3} - 24x^{2} - 10x^{3} + 20x^{2} + 40x^{2}$ = $6x^{4} - 22x^{3} + 32x - 16$	+2(2x) 0x + 4x	$x^2 - 4x - 8)$ $x^2 - 8x - 16$
		j	$= x^{2}(x^{2} + 2x - 6) + 2x(x^{2} + 2x - 6) - 6$ = $x^{4} + 2x^{3} - 6x^{2} + 2x^{3} + 4x^{2} - 12x - 6x^{2}$ = $x^{4} + 4x^{3} - 8x^{2} - 24x + 36$	$x^2 + 2$ $x^2 - 12$	$\frac{2x-6}{x+36}$
		k	$= x^{3}(2x^{4} + x^{2} + 3) + 4x^{2}(2x^{4} + x^{2} + 3) + = 2x^{7} + x^{5} + 3x^{3} + 8x^{6} + 4x^{4} + 12x^{2} + 2 = = 2x^{7} + 8x^{6} + x^{5} + 6x^{4} + 3x^{3} + 13x^{2} + 3$	$+(2x^4)$ $2x^4+x^3$	$(x^2 + 3)^2 + 3$
		1	$= 6(3 + x^{2} - x^{3} + 2x^{4}) - 2x(3 + x^{2} - x^{3})$ = 18 + 6x ² - 6x ³ + 12x ⁴ - 6x - 2x ³ + 2 = 2x ⁷ - x ⁶ - 3x ⁵ + 14x ⁴ - 5x ³ + 6x ² - 6	$(+2x^4)$ $(x^4 - 4x^4)$ $(x + 18)$	$ + x^{3}(3 + x^{2} - x^{3} + 2x^{4}) x^{5} + 3x^{3} + x^{5} - x^{6} + 2x^{7} x^{6} $
	3.	a :	$= (p^{2} - 1)(2p^{2} + 11p + 12)$ $= p^{2}(2p^{2} + 11p + 12) - (2p^{2} + 1)p^{2} + 12p^{2} - 2p^{2} - 11p^{2}$ $= 2p^{4} + 11p^{3} + 12p^{2} - 2p^{2} - 11p - 12$ $= 2p^{4} + 11p^{3} + 10p^{2} - 11p - 12$	1 <i>p</i> + <i>p</i> - 12	12) 2
		b =	$= t(t^{2} + 3t + 5) + 2(t^{2} + 3t + 5)$ = $t^{3} + 3t^{2} + 5t + 2t^{2} + 6t + 10 + 2t^{3} + 10t^{2} + 22t + 38$	$+ t(t) + t^3 + t$	
		c	$= 2x^{2}(x^{2} + x - 4) - 6(x^{2} + x - 4)$ = 2x ⁴ + 2x ³ - 8x ² - 6x ² - 6x + 2 = 14x ⁴ + 4x ³ - 19x ² + 13x + 18	+ 3x 24 + 1	$\frac{(4x^3 + 2x^2 - x + 6) - (4x^3 + 2x^2 - x + 6)}{2x^4 + 6x^3 - 3x^2 + 18x - 4x^3 - 2x^2 + x - 6}$
		d =	$= u(u^{3} - 4u^{2} - 3) + 2(u^{3} - 4u^{2} - 4$	- 3) - - 2u - 9	$2u^{3}(u^{2} + 5u - 3) - u(u^{2} + 5u - 3) + (u^{2} + 5u - 3)$ $5 - 10u^{4} + 6u^{3} - u^{3} - 5u^{2} + 3u + u^{2} + 5u - 3$

2. Factorise linear, quadratic and simple cubic expressions

1.	a $2(x+3)$	b $x(x + 6)$	c $3y(2y-3)$	d $3xy^2z(8xy + 5z^3)$
2.	a $(x+1)(x+3)$	b $(x+2)(x+5)$	c $(y-1)(y-2)$	d $(x-3)^2$
	e $(y+1)(y-2)$	f $(a+4)(a-2)$	g $(x+1)(x-1)$	h $(p+2)(p+7)$
	i $(x+3)(x-5)$	j $(m-2)(m-8)$) k $(t+6)(t-3)$	1 $(y-5)(y-8)$
	m $(r+4)(r-4)$	n $(y+7)(y-9)$	o $(a+11)^2$	p $(x+12)(x-6)$
	q $(x-2)(x-13)$	r (s + 8)(s + 15	s (<i>p</i> + 17)(<i>p</i> − 3)	t $(m-10)(m+9)$
3.	a $(2x+1)(x+1)$	b (3 <i>p</i> + 1)(<i>p</i> + 2	c $(2y-3)(y-1)$	d $(2+m)(1-m)$
	e $(3r+1)(r-1)$	f $(5+y)(1-4y)$) g $(3a-1)(a-4)$	h $(5x+2)(x-2)$
	i $(2x+1)(2x+3)$	j $(3s-1)^2$	k $(2m+5)(2m-5)$	1 $(2+3y)(1-2y)$
	m $(4u+1)(u+4)$	n (3p+4)(2p-	1) o $(8x+3)(x+2)$	p $(6r-5)(2r+3)$
4.	a $x(x+3)(x+$	4) b $x(2x + 1)$	(x-4) c $x(4x+1)$	(3x - 2)

3. Laws of indices

1.	a $=\frac{1}{3^2}=\frac{1}{9}$	b = 1	$\mathbf{c} = \frac{1}{(-2)^6} = \frac{1}{64}$
	d = $6^2 = 36$	$\mathbf{e} = (\frac{3}{2})^{-3} = (\frac{2}{3})^3 = \frac{8}{27}$	f = $\sqrt{9} = 3$
	$g = \sqrt[4]{16} = 2$	h = $\sqrt[3]{-27} = -3$	$i = \sqrt{\frac{1}{49}} = \frac{1}{7}$
	$j = \sqrt[3]{125} = 5$	$\mathbf{k} = \sqrt{\frac{4}{9}} = \frac{2}{3}$	$1 = \frac{1}{\sqrt{36}} = \frac{1}{6}$
	$\mathbf{m} = \frac{1}{4/81} = \frac{1}{3}$	$\mathbf{n} = \frac{1}{\sqrt[4]{-64}} = -\frac{1}{4}$	o $=\sqrt[5]{32} = 2$
	$\mathbf{p} = \sqrt[3]{-\frac{8}{125}} = -\frac{2}{5}$	$\mathbf{q} = \sqrt{\frac{9}{4}} = \frac{3}{2} \text{ or } 1\frac{1}{2}$	$\mathbf{r} = \left(\frac{27}{8}\right)^{-\frac{1}{3}} = \sqrt[3]{\frac{8}{27}} = \frac{2}{3}$

2.	a $=(\sqrt{4})^3 = 2^3 = 8$	b $=(\sqrt[3]{27})^2 = 3^2 = 9$
	$\mathbf{c} = (\sqrt[4]{16})^3 = 2^3 = 8$	$\mathbf{d} = (\sqrt[3]{-125})^2 = (-5)^2 = 25$
	$e = (\sqrt{9})^5 = 3^5 = 243$	$\mathbf{f} = \frac{1}{(\sqrt[3]{8})^2} = \frac{1}{2^2} = \frac{1}{4}$
	$\mathbf{g} = \frac{1}{(\sqrt{36})^3} = \frac{1}{6^3} = \frac{1}{216}$	h = $(\sqrt[3]{\frac{1}{8}})^4 = (\frac{1}{2})^4 = \frac{1}{16}$
	$\mathbf{i} = (\sqrt{\frac{4}{9}})^3 = (\frac{2}{3})^3 = \frac{8}{27}$	$\mathbf{j} = (\sqrt[3]{216})^2 = 6^2 = 36$
	$\mathbf{k} = (\sqrt{\frac{16}{9}})^3 = (\frac{4}{3})^3 = \frac{64}{27} \text{ or } 2\frac{10}{27}$	$\mathbf{I} = (\sqrt[3]{-\frac{27}{64}})^4 = (-\frac{3}{4})^4 = \frac{81}{256}$
	$\mathbf{m} = \sqrt{\frac{4}{100}} = \frac{2}{10} = \frac{1}{5} \text{ or } 0.2$	n $= \left(\frac{9}{4}\right)^{-\frac{3}{2}} = \left(\sqrt{\frac{4}{9}}\right)^3 = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$
	$\mathbf{o} = (\sqrt[3]{\frac{64}{1000}})^2 = (\frac{4}{10})^2 = \frac{4}{25} \text{ or } 0.16$	$\mathbf{p} = \left(\frac{25}{16}\right)^{-\frac{1}{2}} = \left(\sqrt{\frac{16}{25}}\right)^3 = \left(\frac{4}{5}\right)^3 = \frac{64}{125}$
	$\mathbf{q} = (\frac{81}{16})^{\frac{3}{4}} = (\sqrt[4]{\frac{81}{16}})^3 = (\frac{3}{2})^3 = \frac{27}{8} \text{ or } 3\frac{3}{8}$	$\mathbf{r} = \left(\frac{64}{27}\right)^{-\frac{4}{3}} = \left(\sqrt[3]{\frac{27}{64}}\right)^4 = \left(\frac{3}{4}\right)^4 = \frac{81}{256}$

3. **a**
$$= \sqrt{4} \times \sqrt[3]{27}$$
 b $= \sqrt[4]{16} + \sqrt{25}$ **c** $= \frac{1}{\sqrt[3]{6}} + \sqrt{36}$ **d** $= \sqrt[3]{-64} \times (\sqrt{9})^3$
 $= 2 \times 3 = 6$ $= 2 + 5 = 7$ $= \frac{1}{2} \div 6 = \frac{1}{12}$ $= -4 \times 27 = -108$
e $= 3^2 - \sqrt[3]{-8}$ **f** $= \sqrt{\frac{1}{25}} \times 4^2$ **g** $= (\sqrt[4]{81})^3 - \sqrt{49}$ **h** $= \sqrt[3]{27} \times (\sqrt{\frac{9}{4}})^3$
 $= 9 - (-2) = 11$ $= \frac{1}{5} \times 16 = \frac{16}{5} \text{ or } 3\frac{1}{5}$ $= 27 - 7 = 20$ $= 3 \times \frac{27}{8} = \frac{81}{8} \text{ or } 10\frac{1}{8}$
i $= \sqrt{9} \times (\sqrt[3]{-32})^3$ **j** $= \sqrt{121} + \sqrt[3]{32}$ **k** $= \sqrt{100} \div (\sqrt{\frac{1}{4}})^3$ **l** $= \frac{1}{\sqrt[4]{6}} \times (\sqrt[3]{243})^2$
 $= 3 \times (-8) = -24$ $= 11 + 2 = 13$ $= 10 \div \frac{1}{8} = 80$ $= \frac{1}{2} \times 9 = \frac{9}{2} \text{ or } 4\frac{1}{2}$
4. **a** $= x^2$ **b** $= y^{-6}$ **c** $= 3p^{-4}$ **d** $= 8x^{-12}$
e $= y^{\frac{5}{2}}$ **f** $= 8b^{\frac{3}{2} + \frac{1}{4}} = 8b^{\frac{11}{2}}$ **g** $= x^{\frac{3}{2} - \frac{1}{3}} = x^{\frac{4}{3}}$ **h** $= a^{\frac{1}{2} - \frac{4}{3}} = a^{-\frac{5}{6}}$
i $= p^{\frac{1}{4} - (-\frac{1}{3})} = p^{\frac{3}{20}}$ **j** $= 9x^{\frac{4}{3}}$ **k** $= y^{1 + \frac{5}{6} - \frac{3}{2}} = y^{\frac{1}{3}}$ **l** $= \frac{1}{3}t$
m $= b^{2^{2 + \frac{1}{4} - \frac{1}{2}} = b^{\frac{7}{4}}$ **n** $= y^{\frac{1}{4} + \frac{1}{3} - 1} = y^{-\frac{1}{6}}$ **o** $= 2x^{\frac{7}{4} + (-\frac{1}{2}) - \frac{2}{4}}$ **p** $= \frac{1}{4}a^{1 + \frac{1}{4} - (-\frac{1}{3})} = \frac{1}{4}a^{\frac{7}{4}}$

4. Simplify and use the rules of surds

- 1. **a** $=\sqrt{4} \times \sqrt{3} = 2\sqrt{3}$ **b** = $\sqrt{4} \times \sqrt{7} = 2\sqrt{7}$ $c = \sqrt{16} \times \sqrt{5} = 4\sqrt{5}$ $e = \sqrt{4} \times \sqrt{6} = 2\sqrt{6}$ $\mathbf{d} = \sqrt{9} \times \sqrt{3} = 3\sqrt{3}$ $f = \sqrt{64} \times \sqrt{2} = 8\sqrt{2}$ $\mathbf{h} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10}$ $i = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$ $g = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$ $1 = \sqrt{49} \times \sqrt{3} = 7\sqrt{3}$ $i = \sqrt{16} \times \sqrt{7} = 4\sqrt{7}$ $\mathbf{k} = \sqrt{9} \times \sqrt{11} = 3\sqrt{11}$ $\mathbf{n} = \sqrt{400} \times \sqrt{2} = 20\sqrt{2}$ $\mathbf{o} = \sqrt{36} \times \sqrt{5} = 6\sqrt{5}$ $\mathbf{m} = \sqrt{36} \times \sqrt{6} = 6\sqrt{6}$ $\mathbf{r} = \sqrt{16} \times \sqrt{13} = 4\sqrt{13}$ $\mathbf{q} = \sqrt{121} \times \sqrt{3} = 11\sqrt{3}$ $\mathbf{p} = \sqrt{4} \times \sqrt{15} = 2\sqrt{15}$ 2. **a** = $3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$ **b** = $4\sqrt{3} - 3\sqrt{3} = \sqrt{3}$ **c** = $4\sqrt{2} + 6\sqrt{2} = 10\sqrt{2}$ $e = 2\sqrt{5} - 3\sqrt{5} + 6\sqrt{5} = 5\sqrt{5}$ $f = 2\sqrt{6} + 5\sqrt{6} - 8\sqrt{6} = -\sqrt{6}$ $d = 6\sqrt{10} - 4\sqrt{10} = 2\sqrt{10}$
- 3. $\mathbf{a} = 3 + 2\sqrt{3}$ $\mathbf{b} = 4 - \sqrt{3} - 2 + 2\sqrt{3}$ $\mathbf{c} = 2 + \sqrt{3} + 2\sqrt{3} + 3$ $= 2 + \sqrt{3}$ $= 5 + 3\sqrt{3}$

$$\mathbf{d} = 4 + 8\sqrt{3} + \sqrt{3} + 6 \qquad \mathbf{e} = 27 - 24\sqrt{3} + 16 \qquad \mathbf{f} = 6\sqrt{3} - 45 + 2 - 5\sqrt{3} \\ = 10 + 9\sqrt{3} \qquad = 43 - 24\sqrt{3} \qquad = -43 + \sqrt{3}$$

4. **a** = 10 + 3
$$\sqrt{5}$$
 + 2 $\sqrt{5}$ + 3 **b** = 4 $\sqrt{2}$ - 3 - 8 + 3 $\sqrt{2}$ **c** = 28 + 12 $\sqrt{7}$ + 9
= 13 + 5 $\sqrt{5}$ = 7 $\sqrt{2}$ - 11 = 37 + 12 $\sqrt{7}$
d = 12 + 15 $\sqrt{2}$ - 2 $\sqrt{2}$ - 5 **e** = 5 + 2 $\sqrt{10}$ - $\sqrt{10}$ - 4 **f** = (3 - 2 $\sqrt{2}$)(4 + $\sqrt{2}$)
= 7 + 13 $\sqrt{2}$ = 1 + $\sqrt{10}$ = 1 + $\sqrt{10}$ = 12 + 3 $\sqrt{2}$ - 8 $\sqrt{2}$ - 4
= 8 - 5 $\sqrt{2}$

5. Rationalise the denominator

1.

$$\mathbf{a} = \frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}\sqrt{5} \qquad \mathbf{b} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2}{3}\sqrt{3} \qquad \mathbf{c} = \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{4}\sqrt{2}$$
$$\mathbf{d} = \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = 2\sqrt{7} \qquad \mathbf{e} = \frac{3\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \sqrt{6} \qquad \mathbf{f} = \frac{\sqrt{5}}{\sqrt{3}\sqrt{5}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{3}\sqrt{3}$$
$$\mathbf{g} = \frac{1}{3\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{1}{21}\sqrt{7} \qquad \mathbf{h} = \frac{12}{6\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \sqrt{2} \qquad \mathbf{i} = \frac{1}{4\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{20}\sqrt{5}$$
$$\mathbf{j} = \frac{3}{6\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = \frac{1}{12}\sqrt{6} \qquad \mathbf{k} = \frac{8\sqrt{5}}{9\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4}{9}\sqrt{10} \qquad \mathbf{l} = \frac{15\sqrt{7}}{6\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5}{6}\sqrt{21}$$

2. **a**
$$=\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

b $=\frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4(\sqrt{3}+1)}{3-1} = 2(\sqrt{3}+1)$
c $=\frac{1}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2} = \frac{\sqrt{6}+2}{6-4} = \frac{1}{2}(\sqrt{6}+2) \text{ or } \frac{1}{2}\sqrt{6}+1$
d $=\frac{3}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{3(2-\sqrt{3})}{4-3} = 3(2-\sqrt{3})$
e $=\frac{1}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} = \frac{2-\sqrt{5}}{4-5} = \sqrt{5}-2$
f $=\frac{\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{\sqrt{2}(\sqrt{2}+1)}{2-1} = 2+\sqrt{2}$
g $=\frac{6}{\sqrt{7}+3} \times \frac{\sqrt{7}-3}{\sqrt{7}-3} = \frac{6(\sqrt{7}-3)}{7-9} = 3(3-\sqrt{7})$
h $=\frac{1}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}} = \frac{3-2\sqrt{2}}{9-8} = 3-2\sqrt{2}$
i $=\frac{1}{4-2\sqrt{3}} \times \frac{4+2\sqrt{3}}{4+2\sqrt{3}} = \frac{4+2\sqrt{3}}{16-12} = \frac{1}{2}(2+\sqrt{3}) \text{ or } 1+\frac{1}{2}\sqrt{3}$
j $=\frac{3}{3\sqrt{2}+4} \times \frac{3\sqrt{2}-4}{3\sqrt{2}-4} = \frac{3(3\sqrt{2}-4)}{18-16} = \frac{3}{2}(3\sqrt{2}-4) \text{ or } \frac{9}{2}\sqrt{2}-6$
k $=\frac{2\sqrt{3}}{7-4\sqrt{3}} \times \frac{7+4\sqrt{3}}{7+4\sqrt{3}} = \frac{2\sqrt{3}(7+4\sqrt{3})}{49-48} = 2(7\sqrt{3}+12)$
l $=\frac{6}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{6(\sqrt{5}+\sqrt{3})}{5-3} = 3(\sqrt{5}+\sqrt{3})$

6. Solve quadratics using factorising, the quadratic formula and completing the square

Factorising

1. **a**
$$(x-1)(x-3) = 0$$

 $x = 1 \text{ or } 3$
b $(x+4)(x+2) = 0$
 $x = -4 \text{ or } -2$
c $(x+5)(x-1) = 0$
 $x = -5 \text{ or } 1$
d $x^2 - 7x - 8 = 0$
 $(x+1)(x-8) = 0$
 $x = -1 \text{ or } 8$
e $(x+5)(x-5) = 0$
 $x = -5 \text{ or } 5$
f $x^2 - x - 42 = 0$
 $(x+6)(x-7) = 0$
 $x = -6 \text{ or } 7$
g $x^2 - 3x = 0$
 $x = 0 \text{ or } 3$
h $(x+9)(x+3) = 0$
 $x = -9 \text{ or } -3$
i $x^2 + 4x - 60 = 0$
 $(x+10)(x-6) = 0$
 $x = -10 \text{ or } 6$
j $x^2 - 5x - 14 = 0$
 $(x+2)(x-7) = 0$
 $x = -2 \text{ or } 7$
k $(2x-1)(x-1) = 0$
l $x^2 - x = 6x - 12$
 $x = \frac{1}{2} \text{ or } 1$
i $x^2 - x = 6x - 12$
 $x^2 - 7x + 12 = 0$
 $(x-3)(x-4) = 0$
 $x = -3 \text{ or } 4$
m $3x^2 + 11x - 4 = 0$
 $(3x-1)(x+4) = 0$
 $x = -1 \text{ or } \frac{5}{2}$
o $4x^2 - 23x - 6 = 0$
 $(4x+1)(x-6) = 0$
 $x = -\frac{1}{4} \text{ or } 6$
f $(3x-2)(2x-5) = 0$
 $x = -\frac{1}{4} \text{ or } 6$
f $(3x-2)(2x-5) = 0$
 $x = -\frac{1}{2}$
f $3x^2 - 13x + 12 = 0$
 $x = \frac{4}{3} \text{ or } 3$
f $(4x+5)(x+4) = 0$
 $(4x+5)(x+4) = 0$
 $x = -\frac{1}{6} \text{ or } 6$
f $(3x - 4)(x - 3) = 0$
f $(4x + 5)(x + 4) = 0$
 $x = -4 \text{ or } -\frac{5}{4}$
f $x = -\frac{1}{6} \text{ or } 6$

Quadratic Formula

Completing the square

18

7. Solve linear simultaneous equations

1	a $3x = 2x + 1$	b $x-6 = \frac{1}{2}x-4$	c $2x + 6 = 3 - 4x$
	x = 1	x = 4	$x = -\frac{1}{2}$
	$\therefore x = 1, y = 3$	$\therefore x = 4, y = -2$	$\therefore x = -\frac{1}{2}, y = 5$
	d subtracting y + 4 = 0 y = -4 $\therefore x = 7, y = -4$	e $2x + 4y + 22 = 0$ 2x - 3y + 1 = 0 subtracting 7y + 21 = 0 y = -3 $\therefore x = -5, y = -3$	f 6x + 6y + 8 = 0 15x - 6y - 15 = 0 adding 21x - 7 = 0 x = $\frac{1}{3}$ ∴ x = $\frac{1}{3}$, y = $-\frac{5}{3}$

8. <u>Solve quadratic simultaneous equations</u>

1.	a	subtracting $x^2 - x - 2 = 0$ (x + 1)(x - 2) = 0 x = -1 or 2 \therefore $x = -1, y = 4$ or $x = 2, y = 7$	b	adding $2x^2 - 7x + 3 = 0$ (2x - 1)(x - 3) = 0 $x = \frac{1}{2}$ or 3 $\therefore x = \frac{1}{2}, y = -\frac{7}{2}$ or $x = 3, y = -6$	c	y = 2x - 5 sub $x^2 + (2x - 5)^2 = 25$ $x^2 - 4x = 0$ x(x - 4) = 0 x = 0 or 4 $\therefore x = 0, y = -5$ or $ x = 4, y = 3$:. $x = 2, y = 1$ or $x = 5, y = 7$	y = 2x - 3 sub. $2x^{2} + (2x - 3) - (2x - 3)^{2} = 8$ $x^{2} - 7x + 10 = 0$ (x - 2)(x - 5) = 0 x = 2 or 5
	d	y = 2x + 10 sub. $x^2 + 2x(2x + 10) + 15 = 0$ $x^2 + 4x + 3 = 0$ (x + 3)(x + 1) = 0 x = -3 or -1 $\therefore x = -3, y = 4$ or $ x = -1, y = 8$	e	y = 1 − x sub. $x^2 - 2x(1 - x) - (1 - x)^2 = 7$ $x^2 = 4$ $x = \pm 2$ $\therefore x = -2, y = 3$ or $x = 2, y = -1$	ſ	y = 1 - x sub. $3x^2 - x - (1 - x)^2 = 0$ $2x^2 + x - 1 = 0$ (2x - 1)(x + 1) = 0 $x = -1 \text{ or } \frac{1}{2}$ $\therefore x = -1, y = 2$ or $x = \frac{1}{2}, y = \frac{1}{2}$: $x = 5, y = -1$ or $x = 4, y = 1$	k $y = 2x - 7$ sub. $x^2 - x(2x - 7) + (2x - 7)^2 = 13$ $x^2 - 7x + 12 = 0$ (x - 3)(x - 4) = 0 x = 3 or 4
	g	y = 4 - x sub. $2x^{2} + x(4 - x) + (4 - x)^{2} = 22$ $x^{2} - 2x - 3 = 0$ (x + 1)(x - 3) = 0 x = -1 or 3 $\therefore x = -1, y = 5$ or $x = 3, y = 1$	h 2	x = 2y sub. $(2y)^{2} - 4y - y^{2} = 0$ $3y^{2} - 4y = 0$ y(3y - 4) = 0 $y = 0 \text{ or } \frac{4}{3}$ $\therefore x = 0, y = 0$ or $ x = \frac{8}{3}, y = \frac{4}{3}$	i	$y = 3 - \frac{3}{2}x$ sub. $x^2 + x(3 - \frac{3}{2}x) = 4$ $x^2 - 6x + 8 = 0$ (x - 2)(x - 4) = 0 x = 2 or 4 $\therefore x = 2, y = 0$ or $ x = 4, y = -3$:. $x = 1, y = 2$ or $x = \frac{5}{2}, y = -\frac{5}{2}$	1 $y = 5 - 3x$ sub. $x^2 - 5x + (5 - 3x)^2 = 0$ $2x^2 - 7x + 5 = 0$ (2x - 5)(x - 1) = 0 $x = 1 \text{ or } \frac{5}{2}$

9. <u>Solve linear inequalities</u>

1	a	2x < 6 $x < 3$	b	$3x \ge 21$ $x \ge 7$	c	2x > 8 $x > 4$		$\begin{array}{l} \mathbf{d} 3x \leq 36 \\ x \leq 12 \end{array}$
	e	$5x \ge -15$	f	$\frac{1}{3}x < 1$	g	$9x \ge 54$		h $3x < -4$
		$x \ge -3$		<i>x</i> < 3		$x \ge 6$		$x < -\frac{4}{3}$
	i	<i>x</i> < 14	j	$4x \leq -10$	k	2 < 3x		$1 5 \ge \frac{1}{2}x$
				$x \leq -\frac{5}{2}$		$x > \frac{2}{3}$		<i>x</i> ≤ 10
2	a	<i>y</i> > 7		b $4p \le 2$ $p \le \frac{1}{2}$			c	$ \begin{array}{l} 6 < 2x \\ x > 3 \end{array} $
	d	$2a \ge 4$ $a \ge 2$		$\begin{array}{c} \mathbf{e} 15 < 3u \\ u > 5 \end{array}$			f	$2b \ge 9$ $b \ge \frac{9}{2}$
	g	3x < -18 $x < -6$		h $y \ge -13$			i	$-20 \le 4p$ $p \ge -5$
	j	r-2 > 6 $r > 8$			4		1	$6 + 2x \ge 24 - 4x$ $6x \ge 18$ $x \ge 3$
	m	7y + 21 - 6y + 2 < 6 y < -23)	n $20 - 8x > 21$ -1 > 2x $x < -\frac{1}{2}$	_	6x	0	12u - 3 - 5u + 15 < 9 7u < -3 $u < -\frac{3}{7}$

10. Solve quadratic inequalities

Answers: Coordinated Geometry

- 11. Find the gradient of a line given two points
 - 1 **a** $=\frac{5-1}{5-3}=2$ **b** $=\frac{9-7}{10-4}=\frac{1}{3}$ **c** $=\frac{5-1}{2-6}=-1$ **d** $=\frac{8-2}{2+2}=\frac{3}{2}$ **e** $=\frac{-1-3}{7-1}=-\frac{2}{3}$ **f** $=\frac{-7-5}{-5-4}=\frac{4}{3}$ **g** $=\frac{-8-0}{0+2}=-4$ **h** $=\frac{-2-6}{-7-8}=\frac{8}{15}$

12. Understand the equation of a straight line

1.	a	grad = 4	b	$grad = \frac{1}{3}$	c	grad = -1	d	grad = -2
		y-int = -1		y-int = 3		y-int = 6		$y - int = -\frac{2}{3}$
2.	a	y = -x - 3	b	2y = x - 6	с	3y = -3x + 2	d	5y = 4x + 1
		grad = -1		$y = \frac{1}{2}x - 3$		$y = -x + \frac{2}{3}$		$y = \frac{4}{5}x + \frac{1}{5}$
		y-int = -3		$grad = \frac{1}{2}$		grad = -1		$grad = \frac{4}{5}$
				y-int = -3		$y-int = \frac{2}{3}$		$y-int = \frac{1}{5}$

13. Find the equation of a line

1.	a $y-2 = 3(x-1)$ y = 3x - 1		b $y-3 = -(x-5)$ y = -x+8
	c $y+3=4(x+2)$ y=4x+5		d $y-1 = -2(x+4)$ y = -2x - 7
	e $y-1 = \frac{1}{3}(x+3)$ $y = \frac{1}{3}x+2$		f $y+2 = -\frac{5}{6}(x-9)$ $y = -\frac{5}{6}x + \frac{11}{2}$
2.	a $grad = \frac{13-1}{4-0} = 3$ y = 3x + 1	b grad = $\frac{-1-9}{7-2} = -2$ y - 9 = -2(x - 2) y = -2x + 13	c grad = $\frac{7-3}{2+4} = \frac{2}{3}$ y - 3 = $\frac{2}{3}(x+4)$ y = 2 x + $\frac{12}{3}$
	d grad = $\frac{8+2}{2+\frac{1}{2}} = 4$ y - 8 = 4(x - 2)	e grad = $\frac{-5+2}{18-3} = -\frac{1}{5}$ y + 2 = $-\frac{1}{5}(x-3)$	$f \text{grad} = \frac{0.4 - 4}{-2 + 3.2} = -3$ $y - 4 = -3(x + 3.2)$
	y = 4x	$y = -\frac{1}{5}x - \frac{7}{5}$	y = -3x - 5.6

14. Know rules for parallel and perpendicular lines

1	a grad of $y = 3 - 2x$ is -2 parallel grad $= -2$	b $2x - 5y + 1 = 0 \implies y = \frac{2}{5}x + \frac{1}{5}$ grad of $y = \frac{2}{5}x + \frac{1}{5}$ is $\frac{2}{5}$ parallel grad $= \frac{2}{5}$	
	c grad of $y = 3x + 4$ is 3 perp grad $= \frac{-1}{3} = -\frac{1}{3}$	d $x + 2y - 3 = 0 \implies y = \frac{3}{2} - \frac{1}{2}x$ grad of $y = \frac{3}{2} - \frac{1}{2}x$ is $-\frac{1}{2}$ perp grad $= \frac{-1}{-\frac{1}{2}} = 2$	
2	a grad of $y = 4x - 1$ is 4 parallel grad = 4 $\therefore y - 7 = 4(x - 1)$ y = 4x + 3	b grad of $y = 6 - x$ is -1 perp grad $= 1$ $\therefore y - 3 = x + 4$ $y = x + 7$ c grad of $x - 3y = 0$ is $\frac{1}{3}$ perp grad $= -3$ $\therefore y + 2 = -3(x + 2)$ y = -3x - 8	
3	a grad of $2x - 3y + 5 = 0$ is $\frac{2}{3}$	b grad of $3x + 4y = 1$ is $-\frac{3}{4}$ c grad of $3x + 5y = 6$ is $-\frac{3}{5}$	

parallel grad = $\frac{2}{3}$	perp grad = $\frac{4}{3}$	parallel grad = $-\frac{3}{5}$
$\therefore y+1=\tfrac{2}{3}(x-3)$	$\therefore y-5=\frac{4}{3}(x-2)$	$\therefore y+7=-\frac{3}{5}(x+4)$
3y + 3 = 2x - 6	3y - 15 = 4x - 8	5y + 35 = -3x - 12
2x - 3y - 9 = 0	4x - 3y + 7 = 0	3x + 5y + 47 = 0

Answers: Trigonometry

15. The sine rule

1

$\frac{AC}{\sin 118} = \frac{16}{\sin 26}$	2	$\frac{\sin \angle PRQ}{8.2} = \frac{\sin 57}{11.4}$
$AC = \frac{16 \times \sin 118}{\sin 26}$ $= 32.2 \text{ cm}$		$\sin \angle PRQ = \frac{8.2 \times \sin 57}{11.4} = 0.6033$ $\angle PRQ = 37.1^{\circ}$

16. The cosine rule

```
1. XZ^2 = 7.8^2 + 15.3^2
2. 18^2 = 13^2 + 17^2 - (2 \times 13 \times 17 \times \cos \angle ACB)
         = 91.422
   XZ = 9.56 \text{ cm} (3 \text{ sf})
```

```
\angle ACB = 72.4^{\circ} (1dp)
```

17. Mixed

	1.	a	$\alpha = 180 - (40 + 32) = 108$	b $x^2 = 2.7^2 + 3.8^2$ c	$\frac{\sin \alpha}{7.6} = \frac{\sin 61}{10.5}$
			$\frac{x}{\sin 108} = \frac{23.1}{\sin 40}$	- (2×2.7×3.8×cos 83)	$\sin \alpha = \frac{7.6 \times \sin 61}{10.5} = 0.6331$
			$x = \frac{23.1 \times \sin 108}{\sin 40}$	$x^2 = 19.229$	$\alpha = 39.276$
			x = 34.2 cm (3 sf)	<i>x</i> = 4.39 m (3sf)	$\beta = 180 - (61 + 39.276) = 79.724$ $\frac{x}{\sin 79.724} = \frac{10.5}{\sin 61}$ $x = \frac{10.5 \times \sin 79.724}{\sin 61}$ x = 11.8 cm (3sf)
	2.	a	$\frac{\sin\alpha}{67} = \frac{\sin 96.5}{92}$	b $1.9^2 = 0.8^2 + 1.7^2$	c $l^2 = 7.4^2 + 8.7^2$
			$\sin \alpha = \frac{67 \times \sin 96.5}{92}$	$-(2\times0.8\times1.7\times\cos\theta)$	$-(2 \times 7.4 \times 8.7 \times \cos 43.7)$
			$\sin\alpha=0.7236$	$\cos\theta = \frac{0.8^2 + 1.7^2 - 1.9^2}{2 \times 0.8 \times 1.7}$	$l^2 = 37.3608, l = 6.1123$
			$\alpha = 46.351$	$\cos\theta = -0.02941$	$\frac{\sin\theta}{7.4} = \frac{\sin 43.7}{6.1123}$
			$\theta = 180 - 96.5 - \alpha$	$\theta = 91.7^{\circ} (1 \text{dp})$	$\sin\theta = \frac{7.4 \times \sin 43.7}{6.1123} = 0.8364$
			$\theta = 37.1^{\circ} (1 dp)$		$\theta = 56.8^{\circ} (1 \text{dp})$
18.	Area	of	triangles		
	1.	a	area	b area c	$\frac{\sin \alpha}{\alpha} = \frac{\sin 72.4}{\sqrt{2}}$

$= \frac{1}{2} \times 2.1 \times 3.4 \times \sin 66 \qquad = \frac{1}{2} \times 35 \times 68 \times \sin 116$ = 3.26 m² (3sf) = 1070 cm² (3sf)

Answers: Inequalities on graphs

-2 < x ≤ 1 y > -2 y < x + 1

x and y are integers.

On the grid, mark with a cross (\mathbf{x}), each of the six points which satisfies all these 3 inequalities.

3. 4x + 3y < 12, y < 3x, y > 0, x > 0

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which satisfy all these four inequalities.

Answers: Transforming graphs

- **a** translated 1 unit in positive *x*-direction
 - c stretched by a factor of 2 in y-direction
 - e reflected in the x-axis
 - g reflected in the y-axis
- **b** translated 3 units in negative y-direction
- **d** stretched by a factor of $\frac{1}{4}$ in x-direction
- **f** stretched by a factor of $\frac{1}{5}$ in *y*-direction
- **h** stretched by a factor of $\frac{3}{2}$ in x-direction

d y

(0, 3)

0

y = 3 - 12x

y = 7 - 4x

(8, 0)

c

c

(0, 4)

y

O (4, 0) (0, -3)

b y = 3(1 - 4x)

d y = -(4x - 7)

3 a $y=2x+5+1 \Rightarrow y=2x+6$ c $y=3(x+4)+1 \Rightarrow y=3x+13$

- 5 a stretch by a factor of 4 in *y*-directionc reflection in the *x*-axis
- (0, 6) (1, 4) (0, 3) (2, 2) (0, 3) (2, 2)

 \Rightarrow

 \Rightarrow

d y

b translation by 2 units in positive x-directiond translation by 5 units in positive y-direction

Answers: Algebraic Fractions

$$1 \quad a = \frac{3x-1}{6(3x-1)} = \frac{1}{6} \qquad b = \frac{3(2x+5)}{4(2x+5)} = \frac{3}{4} \qquad c = \frac{3(y+1)}{(y+6)(y+1)} \qquad d = \frac{(x+5)(x-5)}{(x-2)(x-5)} \\ = \frac{3}{3y+6} \qquad = \frac{x+5}{2}$$

$$e = \frac{(a+2)(a-3)}{(a+6)(a-3)} \qquad f = \frac{x(x+3)}{(2x-1)(x+3)} \qquad g = \frac{(3t+1)(t-4)}{(t+4)(t-4)} \qquad h = \frac{(3x-2)(2x-3)}{(4x+3)(3x-2)} \\ = \frac{a+2}{a+6} \qquad = \frac{x}{2x-1} \qquad = \frac{3x+1}{t+4} \qquad = \frac{2x-3}{4x+3}$$

$$2 \quad a = \frac{3x^2}{9(x-1)} \times \frac{4(x-1)}{2x} = \frac{2x}{3} \qquad b = \frac{(x+6)(x-6)}{(x+2)(x+5)} \times \frac{x+2}{x-6} = \frac{x+6}{x+5} \\ c = \frac{n(n+2)}{(n+4)(n+2)} \times \frac{n+4}{n^2} = \frac{1}{n} \qquad d = \frac{4(x-3)}{(x+2)(x-2)} \times \frac{x(x+2)}{(x+1)(x-3)} = \frac{4x}{(x-2)(x+1)} \\ e = \frac{4y^2}{y(2y+1)} \times \frac{(2y+1)(y+5)}{(y+5)(y-3)} = \frac{4y}{y-3} \qquad f = \frac{(x+1)(x-1)}{(2x-1)(x+4)} \times \frac{(3x-1)(2x-1)}{(3x-1)(x-1)} = \frac{x+1}{x+4} \\ g = \frac{10(x-1)}{5(x+3)} \times \frac{(x+3)(x+4)}{(4+x)(1-x)} = -2 \qquad h = \frac{a^2(a-3)}{4a(2a-1)} \times \frac{(2a-1)(a+3)}{(a+3)(a-3)} = \frac{a}{4} \\ 3 \quad a = \frac{2(y+4)+7y}{y(y+4)} \qquad b = \frac{2x(x+3)-(x-5)}{(x-5)(x+3)} \qquad c = \frac{7-3x^2}{x(x+2)} \\ = \frac{9y+8}{y(y+4)} \qquad = \frac{2x^2+5x+5}{(x-5)(x+3)} \\ d = \frac{2x+5(x-3)}{(2x-3)(x-1)} \qquad e = \frac{2}{q(q+3)} + \frac{5q}{4q(q+3)} \qquad f = \frac{4(x+3)(x+2)}{3x(x-1)} = \frac{7x+6}{3x(x-1)} \\ = \frac{7x-15}{2(x-3)(x-1)} \qquad h = \frac{6x-3(x-2)}{(x+2)(x-2)} \qquad = \frac{5x+12}{(2t+1)(t+3)} - \frac{4}{(2t+1)(t+3)} \\ = \frac{5x+12}{(x+3)(x+5)} \qquad = \frac{3x+4}{(x+2)(x-2)} \qquad = \frac{3}{x-2} \end{cases}$$

$$4 \quad \mathbf{a} = \frac{x(x-5)}{6(x-5)} = \frac{x}{6} \qquad \mathbf{b} = \frac{(4+x)(4-x)}{(x+4)(x-2)} \qquad \mathbf{c} = \frac{2(x-3)(x+1)}{3(x-1)(x-3)} \qquad \mathbf{d} = \frac{x(x+1)(x-1)}{(2x+1)(x-1)} \\ = \frac{4-x}{x-2} \qquad = \frac{2(x+1)}{3(x-1)} \qquad = \frac{x(x+1)}{2x+1} \\ \mathbf{e} = \frac{x(3-x)}{2(x+3)(x-3)} \qquad \mathbf{f} = \frac{x(x+2)(x-1)}{(3x-2)(x+2)} \qquad \mathbf{g} = \frac{(2-x)(1+3x)}{(2x+5)(x-2)} \qquad \mathbf{h} = \frac{(x^2-1)(x^2-4)}{(x+1)(x-2)} \\ = -\frac{x}{2(x+3)} \qquad = \frac{x(x-1)}{3x-2} \qquad = -\frac{3x+1}{2x+5} \qquad = \frac{(x+1)(x-1)(x+2)(x-2)}{(x+1)(x-2)} \\ = (x-1)(x+2)$$

5
$$\mathbf{a} = \frac{10(x+1)(x-1)}{5(x+2)} \times \frac{(x+2)(x+4)}{(x+1)(x+4)} = 2(x-1)$$
 $\mathbf{b} = \frac{t(t-2)}{(2t+3)(t-2)} \times \frac{(3t+2)(2t+3)}{(3t+2)(3t-2)} = \frac{t}{3t-2}$
 $\mathbf{c} = \frac{2(x+1)(x+5)}{(4x-3)(x-1)} \times \frac{x(4x-3)}{4x(x+5)} = \frac{x+1}{2(x-1)}$ $\mathbf{d} = \frac{(4x-3)(2x+3)}{(2x+3)^2} \times \frac{x(2x+3)}{2(3-4x)} = -\frac{x}{2}$
 $\mathbf{e} = \frac{(x^2+1)(x^2+5)}{(x+3)(x-3)} \times \frac{2x(x-3)}{4(x^2+1)} = \frac{x(x^2+5)}{2(x+3)}$ $\mathbf{f} = \frac{(y^2+4)(y+2)(y-2)}{(5y-1)(y+2)} \times \frac{(5y-1)^2}{y^2+4} = (y-2)(5y-1)$